Cold Plate Performance Comparison

Comparing Thermal Resistance of Standard Liquid Cold Plate Technologies

We present cold plate performance data using local thermal resistance - the surface temperature versus the local liquid temperature. This methodology enables more precise thermal analysis for high heat loads. See full details on thermal resistance calculations and how to select a cold plate technology.

Normalized Performance Curves

Thermal resistance is normally expressed as °C per Watt. Thermal resistance describes how much hotter the surface of a cold plate is relative to the temperature of the fluid flowing through the cold plate, under a given thermal load. These performance curves show the normalized thermal resistance for our standard cold plate products (i.e. thermal resistance per square inch). These curves are a good way to compare cold plate technologies, since they are independent of individual part geometries. The lower the thermal resistance, the better the performance of the cold plate.


Thermal resistance is inversely proportional to area. To find the thermal resistance of a 25 square inch cold plate, divide the normalized performance by 25.

Our CP30 standard cold plate is designed for prototyping purposes. It has a thick surface plate for machining. We show two traces - before machining (0.5" / 13 mm) and after machining (0.05" / 1.3 mm). The performance of a custom vacuum-brazed cold plate is usually significantly better than this standard part.

For comparison purposes, the performance of all cold plates is shown using water as the coolant. Treated water is recommended with aluminum (CP20 & CP30) cold plates.

Learn More About Our Cold Plate Options.

Cold Plate Normalized Thermal Resistance Graph

Have questions? We're ready to help!