An example of this is the read/write operation of a typical hard disk drive that undergoes rapid rotary actuation of the arm assembly as it moves from track to track over the disk media during normal read/write operations. Each hard start & stop action is like a miniature impact hammer hitting the structure and energizing all its internal resonances. This is problematic to the extent that there is not sufficient damping in the system to quickly dissipate this unwanted motion of the read/write head. Ultimately, off-track errors can occur slowing down the performance of the device.
Elaborating on this example further, a typical hard disk drive is subject to a collection of excitation sources: the rotating spindle motor that spins disk platters to 7500 or 10000 RPM, the rotary actuated voice coil motor that pivots the arm actuator assembly, the bearing effects of either the arm pivot or spindle bearing that create unwanted disturbances, and the air induced excitation from turbulent airflow from the spinning disks pushing air over the arm / suspension components. The goal is to control these excitation forces at the source level through various design choices. For example, a significant improvement in idle noise created by the drive was achieved once the drive industry changed to more precise fluid dynamic bearings. Better quality components manufactured to higher quality standards reduced variation by tightening component tolerances further helping to reduce excitation levels. Air induced vibration is a by-product of the high speed drives made today, but even this source can be controlled through the use of air straightening devices that help to minimize turbulent air flow, thus reducing this source of broadband excitation to the disk platters and actuator.
In general, strategies for minimizing excitation source levels involve such things as use of light weight components to reduce force levels, minimizing unbalance and misalignment between components, and more precise manufacturing methods that remove unwanted variation. The reduction of reciprocating loads can be achieved by reducing the mass of moving components or the use of inertial counter balances. For geared components, selection of high contact ratios (>2.0), proper lubrication, selection of gear materials, tooth profile and surface finish, and shaft alignment are all factors influencing good gear design and operation. Other methods involve the modification of the actual operating profile whereby sacrifices in speed or power are made for the benefit of better NVH characteristics (i.e. “quiet mode” of a cooling fan that runs at a slower speed often actively controlled to control cooling demand, or an automotive air conditioner that takes longer to cool because of less powerful components, or a hard drive that decelerates slowly to a stop minimizing excitation levels at the expense of longer seek times).