Some chargers have the capability to convert AC power from the grid into a DC current and voltage that will safely charge the electric vehicle battery. These types of chargers use an electrical inverter, a series of electrical switches that rapidly alternate to transform the AC current to a DC current. These inverters may also include step down converters or buck converters to bring high DC voltages to the preferred battery voltage. These electronic switches fire quickly to enable fast charging, a process that generates large amounts of heat. This waste heat poses risk to safe charger operation and reliability, making effective thermal management and cooling solutions a requirement to ensure components work effectively and reliably over the lifetime of the charger.
Level 3 charger cables generate excessive heat as a function of dimensional space. The large current is passed through smaller diameter cables that are required to accommodate weight and consumer lifting limitations, generating excess heat. Charging stations implement cable cooling to manage touch temperatures, control system temperatures to prevent long term systemic damage, and help protect the user.
Most of these chargers are installed in an outdoor environment and subject to external weather conditions. High power electronics within charger systems must be protected from rain, UV, wind contaminant, and other damages making charger enclosure systems, seals, and protection solutions critical to ensure longer and reliable product lifetimes.
Learn more about Boyd’s solutions ideal for Electric Vehicle Charging Stations: